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A brief history of negative dependence

• Negative dependence is intimately connected to combinatorics 
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A brief history of negative dependence

• It appears frequently in combinatorial phenomena, e.g. 
random spanning trees, random cluster models, 
percolation, matroid theory etc.  
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A brief history of negative dependence

• “Disparate problems in combinatorics, ranging from 
problems in statistical mechanics to the problem of 
coloring a map, seem to bear no common features. 
However, they do have at least one common feature: 
their solution can be reduced to the problem of 
finding the roots of some polynomial or analytic 
function.” - Gian-Carlo Rota 
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A brief history of negative dependence

• In the spirit of Rota’s world view, theories of negative 
dependence have been largely codified in terms of 
polynomials and their properties 
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A brief history of negative dependence

• Real stable polynomials are, perhaps the most famous 
example of a class of polynomials with negative 
dependence properties 

• Famously used to prove the Kadison-Singer 
conjecture, which had been open for over 60 years and 
is known to have deep connections to many fields of 
mathematics, including quantum mechanics and C*- 
algebras.  
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A brief history of SLC polynomials

• This talk is about strong log-concavity 

•  SLC polynomials include all real stable polynomials 

• Strong log-concavity was proposed by Gurvit’s in 2009 
as a property enabling approximation algorithms for 
discrete problems  
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A brief history of SLC polynomials

• SLC polynomials rose to prominence since 2018 when 
they were used by Anari et al., and Brändén and Huh to 
resolve several problems in matroid theory, including 
Mason’s conjecture  
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A brief history of SLC polynomials

• Convexity/concavity makes continuous optimization 
tractable   

• Matroid property makes discrete optimization tractable 

• Strong log-concavity was shown to connect these two 
idea in the work of Anari et al., and Brändén and Huh 
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Our focus
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• Today we focus on SLC in the context of diversity 
inducing probability distributions
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What do we mean by diversity?

• We have a collection of items  

• We are interested in assigning a probability  to each  

• High level idea: 

If   are similar, then they are unlikely to co-occur 

[n] = {1,…, n}

π(S) S ⊂ [n]

i, j ∈ [n]

• E.g. Zelda’s cinema / students studying in a library
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Defining diversity

• Diversity inducing properties: 

• Pairwise negative correlation 
 

• Log-submodularity 

π(i, j ∈ S) ≤ π(i ∈ S)π( j ∈ S)

π(S)π(S ∪ {i, j}) ≤ π(S ∪ i)π(S ∪ j)
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The usefulness of diversity in ML

• Video summarization 

• Model compression 

• Avoiding mode collapse in generative models 

• Fairness 

• Accelerated coordinate descent  

• SGD minibatch selection
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Previous models for diversity

• Strongly Rayleigh measures (aka have real stable 
generating polynomial) 

• In particular, determinantal point processes 

• But they do not allow easy control over the nature 
and strength of the induced diversity
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Agenda

• What are SLC distributions? 

• Some comparison to SR  

• Basic computational tools: 

• Sampling (with guarantees)? 

• Mode finding (with guarantees)? 

Josh Robinson  
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Generating polynomial 

• There is a one to one correspondence between discrete distributions and 
polynomials with non-negative coefficients (up to normalization) 

⟷π fπ

Where      fπ(z1, …, zn) = ∑
S⊂[n]

π(S)∏
i∈S

zi
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Definition of strongly log-concave (SLC) 

Definition:

A polynomial  with non-negative coefficients is 
said to be strongly log-concave if for any , the 
function  is concave for all . 

f(z1, …, zn)
α ∈ ℕn

log(∂αf(z)) z ∈ ℝn
+
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Definition of strongly log-concave (SLC) 

Definition:

A distribution  is strongly log-concave if its 
generating polynomial  is.

π : 2[n] → ℝ+
fπ
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Why is SLC more flexible than SR?

• Because SR  SLC (see e.g. Brändén and Huh 2019) 

• There are interesting things in 

⊂

SLC∖SR
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• Budget constrained distribution 

Theorem:
If  is SLC, then  is too π ν(S) ∝ π(S)1{ |S | ≤ k}/(n − |S | )!

Moral:
If  is SLC, then  is too π ν(S) ∝ π(S)1{ |S | ≤ k}

Interesting? 
 can act as a “maximum budget” k
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Why is SLC more flexible than SR?
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• Smoothed distribution 

Theorem:
If  is SLC, then  is too for  π ν(S) ∝ π(S)α /(n − |S | )! 0 ≤ α ≤ 1

Moral:

Interesting? 
As  decreases from 1, the distribution becomes closer 
to uniform 

α

If  is SLC, then  is too for  π ν(S) ∝ π(S)α 0 ≤ α ≤ 1

Josh Robinson  
1st November 2019

Why is SLC more flexible than SR?
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What other SLC distributions are there?

• The uniform distribution on bases of a matroid. This 
was critical in the work by Anari et al. 

• This is an open question
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Sampling

• Anari et al. (log-concave polys II) gave a sampler for 
homogenous SLC distributions 

• What about the general case?

Josh Robinson  
1st November 2019



24

Sampling

• From now, suppose , or  with , 
or .  

• More generally, let  be any distribution such that 
 is SLC 

• Assume that the support of  is on sets of cardinality 
less than or equal to  

ν := π ν ∝ πα 0 ≤ α ≤ 1
ν ∝ π1{ |S | ≤ k}

ν
ν(S)/(n − |S | )!

ν
d
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Sampling

• Strategy: use the homogenous sampler somehow 

• To sample from  we devise a sampler for  ν

νsh(S) ∝ ( k
|S ∩ [n] | )

−1
ν(S ∩ [n]), S ⊂ [n + d], |S | = d

0, otherwise

Symmetric homogenization
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Sampling

• Properties of : 
• -homogenous  
• Marginal distribution on  is exactly  
• Symmetric in variables  

νsh
d

[n] ν
n + 1, n + 2,…, n + d

Josh Robinson  
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• Consequence: a simple recipe for sampling from : 
• Sample  
• Define  

ν
S ∼ νsh

T := S ∩ [n]

• So our problem reduces to sampling from  νsh
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Sampling

•  is 
• Homogenous (good) 
• Not necessarily SLC (bad) 

νsh

• But  is SLC (Theorem) 

• We can sample from it using Anari et al.’s 
homogenous MCMC kernel,  

• drop element uniformly at random, add new 
element proportionally to the probability of the 
resulting set

νsh(S)/(n − |S | )!

Q

Q =
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Sampling
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Sampling

• The mixing time of  started at  is (Q, νsh) S0 ⊂ [n]

tS0
(ε) = min{t ∈ ℕ |∥Qt(S0, ⋅ ) − νsh∥1 ≤ ε}
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Sampling
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Mode finding

• We would like to find 

                           OPT ∈ arg max
|S|≤k

π(S)

• But we don’t want to check all  possibilities 

• Aim: use submodularity - a nice property that yields 
fast algorithms with optimization guarantees 

k

∑
j=1

(n
j )
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Mode finding

• Alkis recently proved that SLC distributions do not 
have to be log-submodular 

• From an optimization perspective this is unfortunate :(  

• However, SLC distribution are weakly log-submodular 
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Mode finding

Theorem (weak log-submodularity):  

ν(S) ⋅ ν(S ∪ {i, j}) ≤ γ ⋅ ν(S ∪ i) ⋅ ν(S ∪ j)

For any , and  with , where  

(Note, this is the same  as before…)

S ⊂ [n] i, j ∈ [n] i ≠ j γ = 4(1 −
1
d )

ν
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Mode finding

• Algorithmically we apply submodular-
type algorithms to  

• But  can be non-negative, and most 
submodular algorithms assume non-
negativity.  

• Fortunately, there is a recent algorithm, 
the distorted greedy algorithm, that 
works for any sign

ρ := log ν

ρ
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Mode finding

• Decompose , where  is non-negative, 
and  is modular - i.e.  for some  

ρ = η − c η
c c(S) = ∑

i∈S

ci ci

Lemma (you can actually do this):

First set , then define 
. This gives the desired decomposition.

ci = max{ρ([n]∖i) − ρ([n],0}
η := ρ + c
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Mode finding

• Build a sequence of sets  
• Where we greedily maximize the distorted objective: 

S0, S1, …, Sk

Φi(S) = (1 − 1/k)k−iη(S) − c(S)
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Mode finding
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Open questions

• Learning an SLC distribution from data? 

• What else is in ? 

• Negative dependence properties of SLC 

• Close gap between mixing time bounds 
and practice 

SLC∖SR
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Summary

• Introduced the class of SLC distributions 

• Exploration of what is in the class 

• Sampling 

• Mode finding
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