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A brief history of negative dependence

* Negative dependence 1s intimately connected to combinatorics
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A brief history of negative dependence

* [t appears frequently in combinatorial phenomena, e.g.
random spanning trees, random cluster models,
percolation, matroid theory etc.
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A brief history of negative dependence

 “Disparate problems in combinatorics, ranging from
problems 1n statistical mechanics to the problem of
coloring a map, seem to bear no common features.
However, they do have at least one common feature:
their solution can be reduced to the problem of
finding the roots of some polynomial or analytic
function.” - Gian-Carlo Rota
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A brief history of negative dependence

* In the spirit of Rota’s world view, theories of negative
dependence have been largely codified in terms of
polynomials and their properties
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A brief history of negative dependence

« Real stable polynomials are, perhaps the most famous
example of a class of polynomials with negative
dependence properties

« Famously used to prove the Kadison-Singer
conjecture, which had been open for over 60 years and
1s known to have deep connections to many fields of
mathematics, including quantum mechanics and C*-
algebras.
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A brief history of SLC polynomials

 This talk 1s about strong log-concavity
« SLC polynomials include all real stable polynomials
 Strong log-concavity was proposed by Gurvit’s in 2009

as a property enabling approximation algorithms for
discrete problems
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A brief history of SLC polynomials

e SLC polynomials rose to prominence since 2018 when
they were used by Anari et al., and Brandén and Huh to
resolve several problems in matroid theory, including

Mason’s conjecture

Log-Concave Polynomials II: High-Dimensional Walks and

LORENTZIAN POLYNOMIALS
an FPRAS for Counting Bases of a Matroid

PETTER BRANDEN AND JUNE HUH Nima Anari!, Kuikui Liu?, Shayan Oveis Gharan?, and Cynthia Vinzant?
Log-Concave Polynomials III: Mason’s Ultra-Log-Concavity

Log-Concave Polynomials I: Entropy and a Deterministic
Conjecture for Independent Sets of Matroids

Approximation Algorithm for Counting Bases of Matroids

Nima Anari!, Shayan Oveis Gharan?, and Cynthia Vinzant? Nima Anari!, Kuikui Liu?, Shayan Oveis Gharan?, and Cynthia Vinzant?
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A brief history of SLC polynomials

« Convexity/concavity makes continuous optimization
tractable

« Matroid property makes discrete optimization tractable

« Strong log-concavity was shown to connect these two
1dea 1n the work of Anari et al., and Brindén and Huh
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Our focus

* Today we focus on SLC 1n the context of diversity
inducing probability distributions
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What do we mean by diversity?

* We have a collection of items [n] = {1,...,n}

* We are interested in assigning a probability z(S5) to each S C [n]

« High level 1dea:

If i, j € |n] are similar, then they are unlikely to co-occur

« E.g. Zelda’s cinema / students studying in a library

TH Josh Robinson
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Defining diversity

 Diversity inducing properties:

« Pairwise negative correlation
n(i,j€S) Lxn(ieS)n(j €9)

* Log-submodularity
2($)n(SU i, j}) < a(SUia(SUj)
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The usefulness of diversity in ML

 Video summarization

Model compression

Avoiding mode collapse in generative models

Fairness

Accelerated coordinate descent

SGD minibatch selection
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Previous models for diversity

» Strongly Rayleigh measures (aka have real stable
generating polynomial)

* In particular, determinantal point processes

* But they do not allow easy control over the nature
and strength of the induced diversity
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Agenda

 What are SLC distributions?
e Some comparison to SR

« Basic computational tools:
e Sampling (with guarantees)?

* Mode finding (with guarantees)?
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Generating polynomial

 There 1s a one to one correspondence between discrete distributions
polynomials with non-negative coefficients (up to normalization)

Where f.(zq,...,2,) = Z ﬂ(S)HZ,-

SCln] 1SN
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Definition of strongly log-concave (SLC)

Definition:

A polynomial f(z,, ..., z,) with non-negative coefficients 1s
said to be strongly log-concave if for any a € N", the
function log(0“f(z)) 1s concave for all z € RY.
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Definition of strongly log-concave (SLC)

Definition:

A distribution 7 : 2" = R . 1s strongly log-concave if its
generating polynomial f_1s.

1 Josh Robinson
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Why is SLC more flexible than SR?

* Because SR C SLC (see e.g. Brandén and Huh 2019)

 There are interesting things in SLC\SR
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Why is SLC more flexible than SR?

« Budget constrained distribution

Theorem:
If #1s SLC, then v(S) x #(S)1{|S| < k}/(n—|S|)! is too

Moral:
If 7 1s SLC, then v(S) « #(S)1{|S| < k} is too

Interesting?
k can act as a “maximum budget”

20 Josh Robinson
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Why is SLC more flexible than SR?

 Smoothed distribution

Theorem:

If 7 1s SLC, then v(S) «x #(S)*/(n — | S|)!istoofor0 < a <1
Moral:

If 7 1s SLC, then v(S) «x #(S)*1stoo forO < a <1

Interesting?
As a decreases from 1, the distribution becomes closer

to uniform
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What other SLC distributions are there?

e The uniform distribution on bases of a matroid. This
was critical in the work by Anari et al.

 This 1s an open question

1 Josh Robinson
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Sampling

« Anari et al. (log-concave polys II) gave a sampler for
homogenous SLC distributions

« What about the general case?

1 Josh Robinson
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Sampling

e From now, suppose v :=m,orv x 77 with0 < a < 1,
orv x l{|S| < k}.

* More generally, let v be any distribution such that
v(S)/ (n—|S|)!1s SLC

* Assume that the support of v is on sets of cardinality
less than or equal to d

TH Josh Robinson
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Sampling

 Strategy: use the homogenous sampler somehow

* To sample from v we devise a sampler for

~1
Vgh(S) o (ISnk[nH) vSnn]), Scln+dl|S|=d

0, otherwise

Symmetric homogenization

TH Josh Robinson
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Sampling

« Properties of vgp:

* d-homogenous
* Marginal distribution on [7] is exactly v
* Symmetric in variablesn + 1, n+2,..., n+d

* Consequence: a simple recipe for sampling from v:
« Sample § ~ v},
e Define T := SN [n]

* So our problem reduces to sampling from v},
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Sampling

* Ugh 1S
 Homogenous (good)
* Not necessarily SLC (bad)

« Butvg,(S)/(n —|S|)!1s SLC (Theorem)

* We can sample from it using Anari et al.’s
homogenous MCMC kernel, QO

* () = drop element uniformly at random, add new
clement proportionally to the probability of the
resulting set
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Sampling

Algorithm 1 Metropolis-Hastings sampler for vy, with proposal Q

1: Initialize S C [n +d]

2: while not mixed do
Set k < |SN [n]|

Propose move T ~ Q(S, ")

3:

SANR LI o

e *® N

10:

if

if

if

TN [n]
R+ T
TN [n]
R+T
TN [n]
R+T

=k —1 then
with probability min{1, §(d — k + 1)}, otherwise stay at S

= k then

=k +1 then
with probability min{1, g(dlfk) }, otherwise stay at S
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Sampling

 The mixing time of (Q, vq},) started at S, C [n] 1s
t (¢) = min{t € N|[|Q(Sp, - ) — vgpll; < €}

Theorem  For d > 8 the mixing time of the chain in Algorithm 1 started at Sy satisfies the bound

ts,(e) < e\/l_d5/22d(loglog { (fsiﬂ) ﬁ} + log 21?)
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PSRF

Sampling

Potential Scale Reduction Factor
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Mode finding

 We would like to find

OPT € arg max z(S)
1S|<k

. But we don’t want to check all 3 <;’> possibilities

e Aim: use submodularity - a nice property that yields
fast algorithms with optimization guarantees
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Mode finding

Alkis recently proved that SLC distributions do not
have to be log-submodular

* From an optimization perspective this 1s unfortunate :(

« However, SLC distribution are weakly log-submodular
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Mode finding

Theorem (weak log-submodularity):

v(S) - v(SU{i,j}) Sy -v(SUiD)-v(SU))

1
Forany $ C [n],and i,] € [n] with i # j, where y = 4<1 — E)

(Note, this 1s the same v as before...)
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Mode finding

» Algorithmically we apply submodular-
type algorithms to p := logv

* But p can be non-negative, and most
submodular algorithms assume non-
negativity.

¢ Fortunately, there iS a recent al g Orithm) Submodular Maximization Beyond Non-negativity:
o . Guarantees, Fast Algorithms, and Applications
the distorted greedy algorithm, that

works for any sign /
I I I i I- 3 4 Josh Robinson
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Mode finding

* Decompose p = 1 — ¢, where 77 1s non-negative,
and ¢ 1s modular - 1.e. ¢(S) = 2 ¢; for some ¢;

€S

Lemma (you can actually do this):

First set ¢; = max{p([n]\i) — p([n],0}, then define
n := p + c. This gives the desired decomposition.
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Mode finding

Algorithm 2 Distorted greedy weak submodular constrained maximization of v =7 — ¢

1: Let Sp = 9

2: for 1 =0,....k—1do

3: Set e; = arg MaXee [n] <I>i+1(Si U 6) — (I)z'—}-l(Sz')
4 if <I>Z-+1(Si U 61') — (Dz—}-l(sz) > 0 then

5: Siv1 < S;Ue;

6: else S; 1 <+ 5;

7: return R = S

 Build a sequence of sets Sy, Sy, ..., 5
* Where we greedily maximize the distorted objective:

D(S) = (1 = 1/ky"'n(S) — c(S)

3 6 Josh Robinson
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Mode finding

Theorem 12. Suppose p : 2I") — R is v-weakly submodular and p(@) = 0. Then the solution
R = S} obtained by the distorted greedy algorithm satisfies

o) =n(R) ~ () = (1= 2 ) (a(0PT) = 52(¢ - 1) - el0PD),

€

where OPT € argmaxs|<j p(S) and { :=|OPT| < k.
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Open questions

* Learning an SLC distribution from data?
« What else is in SLC\SR?
* Negative dependence properties of SLC

 Close gap between mixing time bounds
and practice
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Summary

Introduced the class of SLC distributions
Exploration of what 1s in the class
Sampling

Mode finding
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